
LA-UR-15-27748
Approved for public release; distribution is unlimited.

Title: Generating Cinema Databases for In Situ Visualization of Ocean
Modeling Simulations

Author(s): Eatmon, Arnold
Canada, Curtis Vincent
Patchett, John M.

Intended for: Web

Issued: 2015-10-05

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Generating Cinema Databases for In Situ
Visualization of Ocean Modeling Simulations

ABSTRACT

Science is changing. In the last few years
science has seen a dramatic shift towards
data intensive discovery, a combination of
past paradigms of discovery integrated with
computational power and an ample supply of
data from which we can derive information.
One notable problem with this is that while
data and computational power are
increasing, storage is decreasing. Storage in
this day and age is a resource, and
resources are inherently limited. Due to
being a resource decisions must be made on
how to wisely utilize storage to tackle
scientific challenges.
Cinema databases allow for in situ
processing and visualization, eliminating the
need to write large amounts of data to disk.
Cinema databases allow for scientists to not
only view the data but also to interact with
the data in meaningful ways. Simultaneously,
cinema databases drastically reduce the
amount of storage utilized in simulation.
In this project, I applied cinema database
technology to a climate simulation model,
MPAS-Ocean.

Author Keywords
Computer Science; Earth Science; Climate
Change; Climate Modeling; Simulation; In
Situ Visualization; MPAS-O; Cinema

I. BACKGROUND
MPAS-Ocean
MPAS is a climate modeling simulation
developed at Los Alamos National
Laboratory. The name is an abbreviation for
Model for Prediction Across Scales. The
purpose of MPAS is to aid scientists and
decision makers by utilizing simulation to
inform on climate change over time.

MPAS is designed and managed by the
LANL Climate Ocean and Sea Ice Modeling
(COSIM) Team. The currently released
components of MPAS are the Land Ice,
Atmosphere, and Ocean components.

Cinema
Cinema is an In Situ visualization and
analysis tool; it allows for visualization during
the simulation and decreases the storage
space needed to utilize simulation data.
Unless scientists know what they want in
advance, extreme scale science requires
writing large amounts of data to disk for
analysis. Cinema allows scientists to interact
with data in a compact way, drastically
decreasing disk space used in the
input/output process.
Cinema works by capturing images as the
simulation runs in place at different angles
and time steps then creating an interactive
visualization that can be used to make
decisions and identify regions of interest.

Arnold Eatmon
Fort Valley State University

Curt Canada
Los Alamos National Laboratory

John Patchett
Los Alamos National Laboratory

II. RESEARCH METHODOLOGY
Software Building
The initial build process involved getting the
prerequisites for MPAS-O up and running on
the HPC. We initially used Darwin here at
LANL to build software. However, we
encountered a security issue that did not
allow code to send and receive information
out to the internet, processes like cloning git
repositories did not work as a result. To
remedy this issue, we made a switch to a
LANL HPC on the Turquoise network called
Hobo.
Hobo was able to receive an environment set
up for MPAS-Ocean by LANL scientist David
Rogers on LANL’s mustang HPC. We utilized
this build environment, copying the directory
structure and creating an alias called “cwork”
to access the environment, to proceed with
our work in MPAS-O.
Initial Cinema Databases
The initial cinema databases were generated
at 240 km resolution using a file generated
via Coprocessing called
sphere_temp_20x20.py, however this
resolution is a grid used for test not for
visualization as it does not show discernible
detail.

The same python file worked without issue in
the directory structure set up for 60 km
resolution and output a cinema database.
However, several issues persisted with these
databases even at a discernible resoltution.

Despite being at a higher, 60 km resolution
these were still relatively low resolution as

COSIM scientists were currently doing full
visualizations in 15 km resolution and
working towards detail in 10 km resolution
during the course of this research project.

Beyond the low resolution of the databases,
there was not a known way to alter the
colormap of the cinema databases. As a
result, while domain scientist were in practice
using visualizations that had colormaps
designed by LANL visual artists Francesca
Samsel, intended to intensify the visual
perception of detail in MPAS-O simulations,
the cinema databases were in the default
Moreland Cool-Warm color map.

The default simulation time was set for a
year at an interval of once per week data
retrieval, when in practice climate change
scientist are interested in simulations
decades into the future.

Cinema databases initially could only be
generated for the variable temperature.
However, scientists are interested in
visualizations of many variables. These
variables included Salinity, Relative Vorticity,
Kinetic Energy, and Okubo Weiss.

The generation of cinema databases was
slower than necessary; this was due to being
set to run on a single node with 16
processors per node. However, the

simulations could be run with various
amounts of processors in practice, dictated
by grid files that differ in each resolution.

Finally, the initial cinema databases did not
contain useful, insightful information. For the
purpose of illustration, the upper limit of the
legend is a value of 6.083e34 degrees
Celcius. The values did not reflect actual
ocean temperatures. The issue was one not
only residing in the data range chosen for the
legend but also one where the simulation
utilized the entire vertical coordinate as a
vector and computing the temperature as the
magnitude of that whole vector rather than
for a single layer.

Generation at Higher Resolutions

The first challenge was to improve the
resolution of the cinema databases to current
standards of 15 km. In order to do this, a
directory structure was created by copying
the current directory structure for lower
resolutions and removing the graphs
directory, restarts directory, restart
timestamp file, namelist.ocean_forward file,
and streams.ocean_forward file. These were
replaced with those on the mpas
development website for 15 km resolution.
This resulted in several errors that were
difficult to pin point the solution to as they
were specific to MPAS-O functionality.
MPI errors of various specifics were
eventually resolved by identifying that certain
components of the MPAS-O simulation were
not defined in input files for higher
resolutions. This issue was resolved by
adding the following lines to the below
specified files. To streams.ocean_forward,
the following lines needed to be added in the
15 km resolution file:
<stream name="okuboWeissOutput"
 type="output"

filename_template="analysis_members/okuboWei

ss.$Y-$M-$D_$h.$m.$s.nc"
 filename_interval="01-00-
00_00:00:00"
 packages="amOkuboWeiss"
 clobber_mode="truncate"
 output_interval="0001_00:00:00">

 <stream name="mesh"/>
 <var name="xtime"/>
 <var name="okuboWeiss"/>
 <var name="eddyID"/>

</stream>

<stream name="paraview_catalystOutput"
 type="output"

filename_template="analysis_members/paraview
_catalyst.$Y-$M-$D.nc"
 filename_interval="01-00-
00_00:00:00"
 packages="paraview_catalyst"
 clobber_mode="truncate"
 output_interval="00-00-07_00:00:00">
 <var name="xtime"/>

To the file namelist.ocean_forward in the 15
km and like resolutions, the following lines
needed to be added to the end of the file:
&okubo_weiss
 config_use_okubo_weiss = .true.
 config_okubo_weiss_compute_startup =
.true.
 config_okubo_weiss_directory =
'analysis_members'
 config_okubo_weiss_threshold_value = -
0.2
 config_okubo_weiss_normalization = 1e-10
 config_okubo_weiss_lambda2_normalization
= 1e-10
 config_okubo_weiss_use_lat_lon_coords =
.true.
 config_okubo_weiss_compute_eddy_census =
.true.
 config_okubo_weiss_eddy_min_cells = 100
/

¶view_catalyst
 config_use_paraview_catalyst = .true.

config_paraview_catalyst_compute_interval =
'000-00-07_00:00:00'
 config_paraview_catalyst_compute_startup
= .true.
 config_longitude_periodic_split = 180.

In order to generate these higher resolution
databases, the number of processors used
needed to be increased. It’s necessary in
MPAS-O functionality for the number of
processors used to match the number of

tasks in a grid file, grids changing with
resolution. While the 60 km resolution
contained files that could use processors of
the amounts 16, 64, 128, 256, and 512, the
15 km resolution used processors in the
amounts 128, 256, 512, 1024, 2048, and
4096. As more processors are used, the
simulation runs more quickly. As a result,
1024 processors on the Hobo HPC allowed
for a better run speed.
An error arose as the amount of processors
was increased. The error reads “a process
failed to create a queue pair” and list
possible reasons being insufficient memory
or that no more memory can be registered
with the device. This error is resolved by
utilizing the bind to core option for runs at a
higher resolution using more processors. In
the mpirun command, the line is altered to
the following:

mpirun --bind-to-core –np $numproc
ocean_forward_model

Also, set the environment variable
I_MPI_DAPL_UD to enable by adding the
following line to the run file or by declaring it
in the command line prior to the mpirun
command if running interactively:

setenv I_MPI_DAPL_UD enable

These changes allowed for the generation of
cinema databases at a resolution of 15 km.

MPAS-O Simulation Time Controls
MPAS controls are defined in great detail in
the user guide. However, some functions are
worth noting here for the convenience of use
and brevity.
Time steps are units of time in a simulation
and in MPAS-O are roughly equal to the total
simulated time divided by the interval at
which information is collected in the
simulation.
For illustration, a simulation with a length of
one day that collects information and an
interval of one day will have a single time
step. Because the amount of time steps is
controlled by multiple factors in the MPAS-O
code, this is not always a direct ratio
especially as the difference in simulated time
to interval of collection increases. However it
is still a good approximation.
The length of simulated time and the interval
at which information is collected are
controlled in the input file
namelist.ocean_forward of any given run
directory. They can be altered by opening the
file in a text editor and altering the
config_run_duration variable and the
config_stats_interval variable located on the
6th and 11th lines of the file respectively.
The format of the config_stats_duration file is
Years-Months-Days_Hours:Min:Sec . The
format of the config_stats_interval format is
Days_Hours:Min:Sec. The settings for the
prior one time step example look like:

config_run_duration='0000-00-
01_00:00:00'

config_stats_interval = '0001_00:00:00'

Initial Methods to Import Color Maps
The initial method used to enter color maps
was to enter in the RGB values manually into
the python script. This is done by identifying
the RGB values for the color control points of
a particular color map and entering them in

an RGB triplet format. An RGB triplet
contains values in the format Scalar, R, G, B,
Scalar, and so on. While the Moreland cool-
warm color map contains three color control
points, the resident visual artists’ color maps
had over thirty making manual entry, while
doable, quite cumbersome.
This problem was later remedied by using
the trace function in ParaView to attain the
color map formatted to an RGB triplet in
python code. However this still required
interpolation from Lab space, where the color
maps were designed, to RGB space which
would occasionally result in an out of place
color in the legend.
Initial Adjustment of Data Ranges
Similar to the entry of color maps, changing
the data range first had to be done manually.
This was done by taking the range of interest
in the data and subtracting the minimum
value from the maximum value, then dividing
by the number of color control points in a
particular color map. Then, to find evenly
spaced scalars, the result of this equation is
added recursively starting from the minimum
value until the maximum value is reached.
A major disadvantage to this approach is that
each change in color maps requires the data
range to be redone. In the same vein, errors
in rounding can result in uneven spacing in
the color map.
Altering the data range and color map, while
a step forward, did not resolve issues
stemming from the simulation using the
vertical vector’s magnitude for temperature.

Issues in the Generation of New Scripts
The generation of new scripts led to a couple
of new errors in the process of improving the
workflow of the generation of cinema
databases. Two notable issues were the lack
of a recognized variable for input due to
mixed versions of ParaView and undeclared
visualization properties.
In ParaView the window for variable
selection is Cell/Point Array Status. In the
code, this is reflected as a call for either
CELLS or POINTS. Incorrectly calling one
when the other is required as well as the
absence of a ColorBy function declared
following the statement resulted in output
cinema databases that lacked any coloring.
Using different versions of ParaView for
exporting a script versus writing out cinema
databases further contributes to this issue
due to differences in plugins, patches, and
such that aren’t recognized.

The absence of declarations of some
settings in ParaView can also cause issue.
By default some values of most settings are
0, however the interaction of some functions
changes these to 1. The following cinema
output resulted from making alterations in the
python code to the ColorBy function without
explicitly declaring Use log scale and
Discretize, which should be set to 0 and 1
respectively.

III. FIANLIZED WORKFLOW

Building MPAS-Ocean
MPAS-O source code is publicly available at
the URL http://mpas-dev.github.io/. Prior to
compilation, other components that must be
downloaded and compiled are NetCDF
(serial), Parallel NetCDF, and Parallel
Input/Output (PIO). Build instructions are
outlined in the Prerequisites section of the
MPAS-O User Manual which can be found at
this hyperlinked LANL website.
Detailed build instructions for the LANL
turquoise network HPC Hobo can be found
as outlined by LANL Scientists David Rogers
at the following URL
https://darwin.lanl.gov/projects/vizproject/wiki
/Cinema-studio
For users with access to LANL’s Hobo HPC,
there are instructions to build an environment
for MPAS-O with Cinema functionality on the
above website as well.
Attaining ParaView Coupled with Cinema
Using a version of ParaView that is coupled
with cinema and has an enabled
Coprocessing Plugin drastically simplifies the
process and is highly recommended as it is
the workflow cinema is designed to run from.
The version of ParaView used in this paper is
4.3.1-928-gfc4ca77 64-bit. For those
compiling ParaView without access to the
version in LANL HPC’s that is coupled with
MPAS in the build from LANL Scientist David
Rogers, the following is additional
information regarding the configurations:

Attaining Adaptor Files
In order to get a sort of template from which
you can use in Paraview for visualization,
you need output that matches the input found
in the adaptor of MPAS-Ocean. There are
ten different kinds of adaptor input files,
which are:

 X_Y_NLAYER-primal
 X_Y_NLAYER-dual
 X_Y_Z_1LAYER-primal
 X_Y_Z_1LAYER-dual
 X_Y_Z_NLAYER-primal
 X_Y_Z_NLAYER-dual
 LON_LAT_1LAYER-primal
 LON_LAT_1LAYER-dual
 LON_LAT_NLAYER-primal
 LON_LAT_NLAYER-dual

A script can be written or generated to
produce all ten types of output, labeled
accordingly with VTK unstructured
extensions following. If you know you will be
using one specific type of adaptor file, you
are able to utilize one of the existing python
files in the MPAS-O directory to generate
that specific type of adaptor file.
Included in my archive is a file generated by
Kitware labeled mpasgridwriter.py which will
generate all ten types of adaptor files. Utilize
it by soft linking to mpas.py, then adjusting
the time in the namelist.ocean_forward file to
one day at an interval of one day.
The resolution that these adaptor files are
generated in does not need to match the
resolution of the cinema database they will
be used to generate. If you want your end
result to be a cinema database in 15 km
resolution, it is perfectly fine to generate
adaptor output in 60 km resolution.
However, it is not recommended to use the
240 km resolution to produce adaptor files.
The 240 km resolution is not used for
visualization, rather it is simply a test.
Utilizing the 240 km will make visualization in
Paraview quite difficult as the resolution

makes it hard to identify features that may be
obscured by choices in data range or color
map; higher resolutions more accurately
represent your final result.
The advantage to utilizing a lower resolution
than you need to generate the adaptor files is
that the generation of these files can be done
quicker while using fewer processors. For
example, the generation of all ten types of
adaptor output for a resolution of 15 km can
take over 15 minutes using 128 nodes with
16 ppn. The same amount of adaptor output
can be attained in the 60 km resolution with
32 nodes and 16 ppn in just under 2 minutes.
Using the mpasgridwriter.py should go along
the lines of the following:

$ cd mpas_060km/
$ ln -s -f mpasgridwriter.py mpas.py
$ cd ../
$ msub msub_060km

These commands do not include changing
the simulated time, which is addressed
elsewhere in this paper, nor do they include
the option to change the amount of
processors used, which is also addressed in
another section of this paper.
If you know you are interested in a single
type of adaptor file from the get go, another
option is to utilize the mpas_vtkwriter.py file
that is included in the MPAS-O build
directory. To utilize this file, open it in the text
editor of your choice and the scroll to a
section of the code that looks like the
following:
datasets = {
 'MPAS_OUTPUT': {
 # the grid to output
 #'grid': 'X_Y_NLAYER-primal',
 #'grid': 'X_Y_NLAYER-dual',
 #'grid': 'X_Y_Z_1LAYER-primal',
 #'grid': 'X_Y_Z_1LAYER-dual',
 #'grid': 'X_Y_Z_NLAYER-primal',
 #'grid': 'X_Y_Z_NLAYER-dual',
 #'grid': 'LON_LAT_1LAYER-primal',
 #'grid': 'LON_LAT_1LAYER-dual',

 #'grid': 'LON_LAT_NLAYER-primal',
 #'grid': 'LON_LAT_NLAYER-dual',

Simply navigate to the option for the adaptor
format you wish to use and remove the #
symbol in front of that line. If you desire more
than one type of output, remove the # symbol
from both types of input. In the cinema
databases I generated, I chose to utilize
X_Y_Z1LAYER-primal.
Another option available while using the
mpas_vtkwriter.py file is to select multiple
variables for output in the adaptor files. This
is done by altering the following line of code:

fields to output
fields':['okuboWeiss','temperature','kin
eticEnergyCell','relativeVorticityCell’]

Substituting or adding another variable is
possible in this line, provided that variable is
defined in code. For example, if you wanted
output that included salinity but not Okubo
Weiss, the field would show as follows:

fields to output
fields':['salinity','temperature','kinet
icEnergyCell','relativeVorticityCell’]

This file is made use of in using the same
code lines that would be used for
mpasgridwriter.py, simply swapping the
name to mpas_vtkwriter.py after making the
aforementioned changes.
After the desired adaptor output is attained
(e.g. X_Y_Z1LAYER-primal.pvtu), download
this output to your local machine and open it
in ParaView.

Applying Visualization Properties
Once the output is open in paraview, click
the eye icon next to your file name and then
click apply. A gray, hollow earth should
appear in the visualization window. This grid

should be missing areas that are shaped like
continents as MPAS-O models the ocean not
land.

In the Cell/Point Array Status window,
unselect all, then select the variable you are
interested in visualizing. For the continuity of
this example, I will be using Temperature.
Once this is selected, click apply and the
visualization should show the variable
mapped in the default cool to warm
colormap and a default value range.

In the top right of Paraview, there is an
symbol next to the rainbow icon,
pictured here, select this tool in
order to alter the colormap and data range.
In order to import a color map, click the
folder with a red checkmark icon and then
select the option “Import”. The colormaps
provided by LANL Visual Artist Francesca
Samsel are located in the archive and have
the .xml file extension. Alternatively, select
one of the preloaded color maps. Some
color maps are expected to be built into
versions 4.3.2 and onward of ParaView. In
this example, I selected a Blue Green
Asymmetric Divergent color map.

Select a the drop down to the adjacent right
of the Color option marked “Magnitude” and
then select a single value. For the purposes
in this paper, the most appropriate value is 0.
This will make the change shown below.

Following this step, the data range will adjust
to the magnitude selected in the
visualization. In this and other versions of
ParaView, the setting “Vertical Level” may
need to be adjusted to a value of 1
depending on the type of adaptor file used as
input.
Other visualization techniques that may be of
interest for the generation of MPAS-O
visualizations are changing the background
color, inserting a sphere, and altering the
placement of the legend. Altering the
legend’s placement allows for less horizontal
space to be used while still generating a
roughly square image should the scientist
wish to later change the size of the
visualization. Inserting a blank sphere allows
one to better see the immediate surface and
not the surface visible through the hollows.
The sphere also makes, for those who are
not familiar with MPAS-O, easier to
distinguish that the empty areas are

continental land masses, and not accidents
or the like. Changing the background allows
for a higher degree of visual perception when
the grey is changed to a warm toned grey
which has a higher degree of contrast with
the cool colors of the selected color map.
Insert a sphere by selecting Sources >
Sphere then adjust the Radius option to
6371000 before selecting the apply option.

Alter the Phi Resoltuion and Theta
Resolution values to 100 each to avoid rigid
gaps where the sphere does not lie flat
against the MPAS-O output.

Lastly alter the color of the sphere to your
color of preference.

In this example, the
color black is selected to communicate the
regions are not of interest. Select the color
tool, making sure the object “Sphere” is
selected in the window that shows the
objects you are visualizing. Click edit and
adjust the value to 0, 0, 0 for black. Click
apply.

Changing the background color is done by
selecting the object X_Y_Z_1LAYER-
primal_1.pvtu in the window and navigating
down to the Background option. A suitable
RGB value for a warm grey according to
LANL visual artist F. Samsel is 86, 84, 76
and this is the value used in this example.

The legend in ParaView is moved by
dragging and dropping. This change is
reflected in the python code and can be
altered through the code after the fact
without generating a new script in ParaView
Coprocessing.

Generating a python script
It is important to have the coprocessing
plugin enabled in order to generate a
Paraview python script. This is done by
navigating to Tools > Manage Plugins >
Catalysts Script Generator Plugin then
selecting the autoload option in the check
box and selecting Load Selected to load the
plugin into the current window.
Certain builds of ParaView do not contain the
Coprocessing Plugin and are not suitable for
generating python scripts. The version
recommended in this paper is chosen
because it includes both the coprocessing
functionality paired with cinema functionality,
resulting in very few alterations needing to be
made in the resultant python file.
Select CoProcessing > Export State to open
the wizard. In the next window, select only
the adaptor input name. Other options are
available when selecting Show All Sources,
however these do not need to be selected.
In the next window, the value for Simulation
Name must be changed from “input” to the
name matching the adaptor input you have
selected. In this example, the matching value
for input is X_Y_Z_1LAYER-primal.
Substitute this for input and select continue.
In the next window check the box next to
output to cinema and in the dropdown that
appears labeled Cinema Export, select
Spherical. You should see a preview of the
visualization that the script will generate.

Select done and save the python file to your
local machine.
It is also recommended to use the save state
option to create a state file in ParaView.
Should you need to make slight changes to
the visualization after the fact, this will be
useful.
Alterations to Python File
Some slight alterations can be made to the
python script generated to make it easier to
run and read.
The first alteration is to remove the line

renderView1.AxesGrid = 'GridAxes3DActor'

Which is about line 28 in any given ParaView
Python script. This line references undefined
information for the adaptor file used in the
above example.
In the event you would like to make a slight
change, but do not want to repeat the
visualization process in ParaView, you are
able to make these changes in the code. you
can open a save state in ParaView and
navigate to Tools > Start Trace. Select the
Fully Trace option and then select OK. This
option will record any changes made to the
visualization and output the appropriate
python code when the trace is stopped.
For example, to change a color map without
repeating the visualization process, simply
repeat the aforementioned steps to select a
new color map and then stop the trace. Your
output will be along the lines of the following

Simply select the section of the code that is
output, open the generated python file, and
replace the corresponding area of code with
that output by the trace function.
In order to change the title of the legend,
open the python file and navigate to the
following lines of code (approximately line
102):

temperatureLUTColorBar.Title =
'temperature'

temperatureLUTColorBar.ComponentTitle =
'0'

This section of the code corresponds to the
title of the legend shown throughout the
example of this paper. To change the title
from “temperature 0” to “Temperature”, the
code would appear as follows:
temperatureLUTColorBar.Title =
'Temperature'

temperatureLUTColorBar.ComponentTitle =
' '

Executing MPAS-O with Cinema
To execute the generated script, upload it to
your HPC of choice into the directory of the
resolution you want your cinema database in.
Then create a soft link between this file and
the mpas.py file. This can be done using the
following command

ln –s GeneratedPythonScript.py mpas.py

In the case there is already an mpas.py soft
link set up, adding the –f option to the
command overwrites the existing soft link.
Between multiple runs of MPAS-O with
scripts that generate cinema data bases, it is
a good idea to clear the contents of the
image subdirectory of the directory cinema.
Clearing the contents of the image
subdirectory avoids cross contamination

between runs, particularly those of different
lengths. For example, if you generate a
cinema database with 40 time steps and then
proceed to run a script that outputs 37 time
steps, there will be three folders from the
previous mpas run that were not overwritten.
If you were to run two runs that each
generated 40 time steps, but your second
run encountered an error or timeout midway
that caused it to only generate 17 time steps,
it would appear that the program ran to
completion until further inspection. Because
it is cumbersome to check each directory
after running the executable, it is wise to
simply remove the contents of that directory
between runs.
To save the older as a zip file on the HPC,
use the command

zip –r ZippedDatabase.zip image

A similar option exists to recursively save the
generated database as a tar file. After saving
the current contents of the image
subdirectory, recursively remove the folder
image and then create a new directory as
follows

rm –rf image
mkdir image

The result of executing a script to completion
is a cinema database. This will appear in the
HPC as a series of folders labeled 1.00000
onwards (depending on the amount of time
steps you choose to generate) and an
info.json file. Within the directories is a mix of
folders at different values of phi and theta
that contain images in .png format and
associated image data.

IV. CONCLUSION

Now at the completion of this project, there are
multiple scripts that generate cinema databases
equivalent to the results of full post processing output
from LANL’s domain visual artist. These are shown
below.

The kinetic energy script generates cinema databases
the variable with a data range of 1e-04 to 1 in a linear
blue color map. This color map is used for
visualization in order to give an intuition for the
continuity of values in the data range.

This is a visualization resulting from a script
generated to run the variable Relative
Vorticity in the data range -1e-05 to 1e-05 in
a Blue Green divergent color map. The blue
green reflects the format of the conventional
Moreland cool warm color map while
improving perception of features by using
green. The central divergence reflects a 0
value in the center of the data range.

This results is from a script that outputs a
visualization of the variable Salinity in the
extended Warm Cool color map with a data
range of 30 to 39.

The final result shown in above in this paper
is a visualization output from a script that
generates Temperature in the extended
Warm Cool color map with a data range of -2
to 30 degrees Celsius.

As shown by the above visualizations, this
workflow allows for the generation of cinema
data bases at high resolution with a variety of
variables visualized and a mix of
visualization features such as choice in color
map and scale placement.

REFERENCES:

1) Ahrens, J., Jourdain, S., O'Leary, P., Patchett, J., Rogers, D. H., & Petersen, M. (2014,
November). An image-based approach to extreme scale in situ visualization and analysis.
In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (pp. 424-434). IEEE Press.

2) Samsel, F., Petersen, M., Geld, T., Abram, G., Wendelberger, J., & Ahrens, J. (2015, April).
Colormaps that Improve Perception of High-Resolution Ocean Data. In Proceedings of the
33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems
(pp. 703-710). ACM.

3) Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M. (2013). A
multi-resolution approach to global ocean modeling. Ocean Modelling, 69, 211-232.

